

 Navigation

 	
 index

 	
 next |

 	nucleon 0.1 documentation

Welcome to nucleon’s documentation!

Contents:

	Getting started with Nucleon
	An example application

	Our first database app

	Writing REST/JSON Applications
	Processing Requests

	Returning Responses

	PostgreSQL Database Access
	Making database queries

	High-level API

	Transaction Functions

	Using Signals
	Signal Registration

	Predefined Signals

	Example Usage

	Configuring Nucleon Applications
	Selecting an environment

	Configuration API

	Database access credentials

	Nucleon Management Commands
	Application Management

	Database Management

	Graceful Application Exit

	Coroutine-based concurrency with gevent
	Diagnosing blocking calls

	Undertaking more expensive processing

	In-memory Persistence

	Changelog
	Version 0.1

	Version 0.0.2

	Version 0.0.1-gevent

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Getting started with Nucleon

Starting a new nucleon app is easy. Just type:

$ nucleon new example_project
$ cd example_project

to set up a basic nucleon project (obviously, you can use any name instead of
example_project).

You should then see several files in your project directory:

	app.py - the application setup - views can be written here.

	app.cfg - per-environment configuration settings

	database.sql - an SQL script to create database tables and initial data

	tests.py - a suitable place to write nose tests [http://readthedocs.org/docs/nose/en/latest/].

Then just run:

$ nucleon start

in the same directory to start the server. You should be able to see the
nucleon app running by visiting http://localhost:8888/ in your web browser. In
the default setup, the version of the application is displayed as a JSON
document.

An example application

Let’s go through the process of building a nucleon application. Let’s imagine
we have a small list of countries that we can trade with, and we want this
information to be available as a web service for other services to query.

Having set up an application you can immediately start writing views (functions
that process web requests) by editing app.py. Let’s do that now. After the
bootstrapping code that sets up the app is a suitable place to start writing
views.

First, let’s set up the data we are going to serve:

COUNTRIES = {
 'gb': {
 'name': "United Kingdom",
 'language': 'en-GB',
 'currency': 'GBP'
 },
 'fr': {
 'name': "France",
 'language': 'fr-FR',
 'currency': 'EUR'
 }
}

Then we can add a couple of views on this data. First, other services may want
to know our country codes:

@app.view('/countries/')
def countries(request):
 return COUNTRIES.keys()

This view, which can be accessed under /countries/
(http://localhost:8888/countries/ if you are following along!), is simply a
JSON list of country codes!

Another view we might want to support is a view for getting full information on
a country. Let’s write that view now:

from nucleon.http import Http404

@app.view('/countries/([a-z]{2})/')
def country(request, code):
 try:
 return COUNTRIES[code]
 except KeyError:
 raise Http404('No such country with the code %s.' % code)

The regular expression in the app.view() decorator means that this view will
be called to handle requests for /countries/<code>/ where code is a 2-letter
country code. For example, we can request /countries/gb/ and the response JSON document will be

{
 "name": "United Kingdom",
 "language": "en-GB",
 "currency": "GBP"
}

Our first database app

Let’s now try to write a shared to-do list. Unlike the above application, this
will require persistence. nucleon can be integrated with a variety of different
NoSQL stores, but particular attention has been paid to its integration with
the PostgreSQL database, such that multiple greenlets can execute SQL statements
in the database at the same time.

The first thing we should do is open database.sql and add write some SQL
statements (using any PostgreSQL syntax you like) to configure the required
database table:

CREATE TABLE tasks (
 id SERIAL PRIMARY KEY,
 title VARCHAR(255) NOT NULL,
 description TEXT,
 complete BOOLEAN NOT NULL DEFAULT FALSE;
);

We can have nucleon create this table by running:

$ nucleon syncdb

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Writing REST/JSON Applications

Nucleon makes it easy to write JSON/REST applications with relatively little
code. The URL routing and view dispatching is modelled on Django’s, except that
in Nucleon callables are registered directly with an app rather than being
automatically loaded from a separate URL configuration module.

Views are simply methods that accept a request object as a parameter and return
a response. The response is typically a structure consisting of lists, dicts,
strings, etc., that will be served to the user as JSON.

The other type of response is a nucleon.http.Response subclass, which allows
a wider variety of return values or response codes.

Processing Requests

Returning Responses

Nucleon includes several classes that can be used as responses, in addition to
returning Python structures to be serialised as JSON. These are all based on
WebOb Response [http://docs.webob.org/en/latest/reference.html#id2]:

A subclass of Response is provided as a convenience for returning a response in
JSON format. This is necessary if you wish to customise the response - for
example, by including different response headers, or to return a different
status code.

Another convenience is the ability to raise particular exception classes which
will cause Nucleon to serve standard error responses.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

PostgreSQL Database Access

Nucleon includes a wrapper for the psycopg2 PostgreSQL driver that shares a
pool of database connections between greenlets. The number of open database
connections is capped for performance.

Making database queries

A PostgreSQL connection pool can be retreived from each app’s Application object.

When a greenlet wishes to make a database request, it “borrows” a connection
from the pool. A context manager interface ensures that the connection is
returned to the pool when the greenlet no longer needs it.

High-level API

A higher level API is available for pre-defining queries that can be executed
later. This is intended to save boilerplate and allow queries to be defined in
one place - by convention, a separate queries.py.

The style of the API is largely declarative; queries can be declared in SQL
syntax but can be used as Python callables. For example, declaring and using a
query might work as follows:

>>> db = Database('database')
>>> get_customer = db.select("SELECT id, name FROM customers WHERE id=%s")
>>> get_customer(52).unique
{'id': 52, 'name': 'Leonard Winter'}

The entry point to this high-level API is the Database class, which wraps a PostgreSQL connection
corresponding to a setting defined in the application settings file.

When performing a query, the return value is an object that allows
transformation of the results into simple Pythonic forms.

A results instance is also iterable; iterating it is equivalent to iterating
.rows, except that it does not build a list of all results first.

Transaction Functions

Sometimes we want to do more processing in Python than is possible using the
above approach - we may need to take results into Python code, operate on them,
and perform database actions as a result.

We can do this using a “transaction function” - effectively a block of code in
which database queries are either all committed or all rolled back. This is
written as a decorated function whose first position argument is a callable
that can be used to perform queries within the transaction context:

db = Database('database')

@db.transaction()
def add_customer(q, name)
 return q('INSERT INTO customers(name) VALUES(%s)', name)

Additionally, it is possible to specify that such a transaction be
automatically retried a finite number of times - this is useful if there can be
integrity problems but the chances of such are relatively low.

For example, we can write a transaction to insert a record with the next
highest id value as follows (assume id has a uniqueness constraint):

@db.transaction(retries=3)
def insert_value(q):
 lastid = q('SELECT max(id) FROM test').value
 return q(
 'insert into test(id, name) values(%s, %s)',
 lastid + 1, 'a%s' % lastid
)

This would be retried up to three times (4 attempts total) if there was an
integrity error (ie. another client inserts the same id between the SELECT and
the INSERT.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Using Signals

Often it is necessary for operations to be performed at particular points in the
lifecycle of an application.

To allow the developer to register code to be called at these points in the
lifecycle, Nucleon provides a system of signal registration and dispatch.

Signal Registration

Predefined Signals

Several signals are predefined that will be called by the nucleon framework at
appropriate times during the application lifecycle. They will also be called
when at appropriate times when running tests, though the testing lifecycle may
be subtly different [1].

	
nucleon.signals.on_initialise

	Fired before the application has started. Callbacks receive no arguments.

	
nucleon.signals.on_start

	Fired when the web application has started and is accepting requests.
Callbacks receive no arguments.

Example Usage

To register a signal handler that logs that the application is accepting
requests:

import logging
from nucleon.signals import on_start

@on_start
def log_ready():
 logging.info("Application started")

Footnotes

	[1]	In particular, nucleon.signals.on_start will always be called before
any tests are executed, whereas in production requests may be processed
before the on_start event is finished dispatching.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Configuring Nucleon Applications

A Nucleon app’s configuration is loaded from a file named app.cfg, which
must reside in the same directory as the application’s app.py. The
configuration file is in standard Python ConfigParser [http://docs.python.org/library/configparser.html] format.

Settings are loaded from sections within the configuration file named by
environment - different environments (demo, staging, qa, production, etc.) may
well have different connection settings for databases, queues, services and so
on. Each application is configured at start time to use settings for a
particular environment.

Selecting an environment

The default environment is called ‘default’ and so is loaded from the
configuration file section named [default].

However, when running tests, settings are loaded from the test environment.
This switch is currently enacted by calling nucleon.tests.get_test_app().

Configuration API

In an application, settings for the current environment can be retrieved as
properties of a global settings object.

	
nucleon.config.settings

	A global settings object that reflects the current environment.

Config variables are available as properties of this object.

	
environment

	The name of the currently active environment.

	
_set_environment(environment)

	Change to a different environment.

This method will raise ConfigurationError if any settings have been
read. The alternative could allow the application to become partially
configured for multiple different environments at the same time, and
pose a risk of accidental data loss.

For example, reading the currently configured database is as simple as:

from nucleon.config import settings
print settings.database

Database access credentials

Databases can be configured for each environment by using the following syntax:

[environment]
database = postgres://username:password@host:5432/databasename

‘database’ is not a special name - just the default. Specific database
connections can be requested by passing the name of their configuration setting
when retrieving a connection pool from the app with
nucleon.framework.Application.get_database(). Thus a Nucleon app can easily use
connections to multiple databases (albeit with a risk of deadlocks if greenlets
require exclusive use of connections on multiple databases).

Nucleon can manage the set up of database tables and inserting initial data.
This is achieved using the commandline tools - see Nucleon Management Commands for full
details.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Nucleon Management Commands

Nucleon has a basic command line interface for managing applications and databases.

Most commands operate on the nucleon application in the current directory, but
will also work if called from a parent directory.

Application Management

	
new <dest>

	

Sets up the initial structure of a nucleon application in the named directory.

	
start

	

Start the nucleon application.

By default, nucleon’s web service is available on port 8888.

Database Management

	
syncdb

	

Creates any database tables listed in database.sql that do not already exist,
and also performs INSERTs into the tables that it creates.

	
resetdb

	

Runs the database.sql script. Any tables that already exist are dropped and
re-created.

Graceful Application Exit

To close nucleon app in production environment please send it a SIGUSR1 message.
Within 10 seconds timeout (default timeout) nucleon will:

	Stop serving new pages. All requests during shutdown will be handled with 503 response.

	Wait for existing requests to complete.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nucleon 0.1 documentation

Coroutine-based concurrency with gevent

Nucleon is tightly integrated with the gevent [http://www.gevent.org/] library, which makes it possible
to perform multiple IO operations apparently concurrently, without the overhead of
operating system threads.

This model of programming can require a different way of thinking.
Specifically, unless a greenlet yields control either explicitly or by blocking
on something, it will block everything else happening anywhere else in the
nucleon application. For example an operation that takes 1 second to complete
prevents any other requests from being served for a whole second, even if those
operations would consume a tiny amount of CPU time. This could cause severe
performance problems.

On the other hand, blocking network operations are very efficient. This
includes database operations, REST calls, or communication with AMQP. gevent
patches Python so that instead of blocking, other operations will be processed
as if in the background. This includes Python operations that block, as well
as pure Python libraries that use those operations.

Warning

Native libraries can completely block gevent. If an external library
performs some blocking operation, your entire application will grind to a
halt. You should identify whether the library supports non-blocking IO or
can be integrated with an external IO loop, before attempting to integrate
the library.

You might need to be particularly careful if a library performs I/O as a
hidden side-effect of it normal operation. Some XML-processing libraries,
for example, may make web requests for DTDs in order to correctly process
an XML document.

You should also watch out for unexpected DNS activity.

To use gevent to best effect you should try to ensure that CPU is used in very
short bursts so that the processing of other requests can be interleaved.

Diagnosing blocking calls

The Linux strace command can be used to print out the system calls used by
a nucleon application.

$ strace -T nucleon start

The -T option will make strace display the time spent in each system call -
pay attention to any calls with particularly large values, other than
epoll_wait() (which is how gevent stops when all greenlets are blocked).

Undertaking more expensive processing

If you do need to use more CPU time very rarely, then it’s possible to
mitigate the impact to other requests running at the same time.

The most direct way to do this is to explicitly yield control from within a
greenlet. gevent will run any other greenlets that can run before returning
control to the yielding greenlet. This is most similar to conventional
threading.

A more elegant way to do this is to use a map-reduce model. In the map phase, a
greenlet breaks up a task into many component tasks. These are each put onto a
queue. Other greenlets pick up a task and execute them. The results are also
put back into a queue. In the reduce phase some greenlet blocks waiting for
responses and combines the results. Writing a task in this way can give
extremely good scalability.

In-memory Persistence

Nucleon runs in a single native thread in a single process, with all greenlets
sharing the same memory space. Because of this, Nucleon apps can store data in
application memory. No synchronisation primitives are required, so long as your
application code never performs leaves the memory space in an inconsistent
state while blocking IO operations are being performed.

Ensuring this is the case is preferable to using gevent.coros classes for
locking, as this will simply reduce the number of greenlets eligible to run to
completion while the greenlet holding the lock is blocked on I/O.

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	nucleon 0.1 documentation

Changelog

Changes to Nucleon:

Version 0.1

	Removed AMQP support from core - there is now a new standalone package to
provide AMQP support.

Version 0.0.2

	Now uses gevent v1.0b4

	Removed dependency on Beautiful Soup

	Added support for type and sequences in SQL scripts

	Added transaction support for database API

	Reverted the signature of make_reinitialize_script to avoid backwards-incompatible changes

	Returned the row count for UPDATE and DELETE queries

	Fix: Make nucleon.validation importable

	Allow no-op change of settings environment

Version 0.0.1-gevent

Initial Version

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	nucleon 0.1 documentation

Index

 _
 | E
 | N
 | R
 | S

_

 	

 	_set_environment()

E

 	

 	environment

N

 	

 	
 new <dest>

 	

 	nucleon command line option

 	
 nucleon command line option

 	

 	new <dest>

 	resetdb

 	start

 	syncdb

 	nucleon.config.settings (built-in variable)

 	

 	nucleon.signals.on_initialise (built-in variable)

 	nucleon.signals.on_start (built-in variable)

R

 	

 	
 resetdb

 	

 	nucleon command line option

S

 	

 	
 start

 	

 	nucleon command line option

 	

 	
 syncdb

 	

 	nucleon command line option

 Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		nucleon 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Daniel Pope.
 Created using Sphinx 1.2.2.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

